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ABSTRACT
The Darwin model of electironagnetic interaction is presented as
a self-consistent theory, and is shown %o bg an excellent approxima-
ion to the Maxwell theory for slow electromagngtic waves. Since

the fast waves of the Maxwell theory are absent, it is convenient

for use in the computer simulation of the electromagnetic dynamics

of nonrelativistic plasma.
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Simulation studies of "plasma behévior havé usually been based
eitﬁer on the Coulomb model of particle interaction or on the full
Maxwell theory. For the consideration of eleciromagnetic effects, it
is not necessary to use the Maxwell theory, which includes the propa-
gatiﬁn of fast waves (whose group velocities are of the order of E),
and vhich thus has the disadvantage of requiring a small time step.
Indeed, the many plasma phenomena in which fast waves are unimportant
are well described by the Darwin modeli of electrodynemics.

The Darwin model, in which thefe is no retéréation, has been usead
in the past to study electromagnetic interactions in microscopic
systems,2 and for the statistical mechanics of many-body systems,
both neutral3 and plasma..lL While for nonequilibrium plasma the Darwin
model has been little used in analytic theoretical vork, it seems most
sui?able for simulation studies, as pointed out by Hasagawa and Oku.da,5
who rediscovefed it in simulating one dimensional plasma dynamics

In this paper we investigate the analytic properties of the Darwin
ﬁodel.‘ The model is usually treated as & second order (in v/c) approxi-

mation to the relétivistic Méxwell theory.6 We present it here as a

self consistent theory arising from a particle Legrangian:

S

L=2Z % ivi2 - C + M, where the kinetic energy is nonrelativistic,
while the Coulomb energy, C = % ) ei¢1 +Z ei¢ex(£,t), and the magnetic

) 1 i ex . .
encrgy M = 5 Z ei(gi/c)nﬁ + 2 e (v, /c)A (r;,t), include both pair
interactions and interactions with external potentials. The internal

potentials are defined as

¢i(£i:[£j}) = ;{: ej/rij ’ | (1a)
| I(#H)
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L
A7(x;,(zy)) = Z ey Z(xy ;) (xs/e). (1v)
3(#1)

The magnetic interaction tensor is g(g) = % (L + Tr)/r. The internal.
potential (1b) is solenoidal because (8/8{)'2(5) = 0. We therefore
choose the transverse or Coulomb gauge also for the external potential:
v-A"* = 0.

The canonical momentum of a particle

B = 30/3y; = myy, + (e /)T + 4%z, 0)] (2)

is a function of the velocities of all the particles through Qi. The
Iagrangian equation éi = BL/azi is the standard Newton-Lorentz equa-
tion of motion, when the electromagnetic field is expressed in terms
of the potentials.

. When the external potentiéls are static, the' invariance of L
under time-translation implies conservation of energy dH/dt = O, where
% miviz +C + M
. When the

the Hamiltonian H =1L Ry - L has a simple form H = I
in terms of velocities (but not in terms of momenta3’u)
exterﬁal field vanishes, the invariance of L under space-translation
implies conservation of total canonical momentura: (d/dt)z Ei(t) = 0.

If the set of discrete partigies is approximated by a continuum

with charge and current demsities p(r,t) and j(E;t), the internal

potentials {¢i,él) become fields ¢1n(£,t), an(z,t) satisfying

L PE - (32)
- it o by /e At =0 . (3b)
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The source of &in ié fhe transverse (or solenoidal) part of Q, defined
mosfisimply in'tefms of spatial Fourier transforms;
QT(k,t) = (T - ﬁﬁ)-g(g,t).' Note that the retardationless elliptic
equation (3b) has the same form as the Poisson equation (3a), whose
solution is standard in simulation studies.

bf the four Darwin equations for the internal eléctromagnetic

field, only one:
eV x Eln = by + Bngn/bt (&)

differs from Maxwell's; the others are the same. Here EL = - V¢ is
the longitudinal (or irrotational) part of the eslectric field. The
longitudinal part of (4), O = bWiL + agLin/Bt, expresses charge con-
servation in agreement with (3a). The transverse tart of (1),
eV x gi“ = hmj, differs from Maxwell theory in omitting ag,rin/at,
and leads to the Biot-Savart law: g;n(z,t) = c—lfd5r'(vl£ - £'|'l) x
Az'ot)e

The differential conservation laws differ from those of the
Nwaeli fheory. If we require the external field also to satisfy the

Darwin field equations, the energy equation is

~

-E-iex = (B/Bt)[(IEL[2+-E?)/8W + Zsfd3v~% msvefs] + V-[(c/hw)g x B

- ('u#c)’l(ag/at)(ags/at) + 3 fady % msvéxfs] ,

where fs(g,z,t) is the particle distribution function, satisfying the
standard Vlasov equation. The momentum equation is, in the absence
of external fields, (B/Bt)(c"lpg + Zsfdiv msxfs) - V-P, where the

momentum flux density is P = Zsfd3v mszzfs + g(B2 + IELIQ + EQ'EL)/BW
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: T .1, . . ] .
- LI E. 3 by, Te: = OF .
| [13}3 + BB+ e (AR, + EA)| /b (Here E. = OF /0t.)
To see how the Darwin model modifies the plasma dynamics, we con-
sider lincar oscillations of a uniform plasma. With Q(g,w) =

o(k,w) E(J,») and the Darwin field equations, we obtain

0, o (5)

fl

[sto0) - (2" + 1] 'B(x,0)

where e=1I+ 4ﬂia;¥g, n2 = kzce/h?g %T

n

AA
I - kk, and g must be derived
from the linearized kinetic equation. The dispersion eguation w(g\
" rasudts from the vanishing of the determinant of (5). The Maxwell

equations, on the other hand, yield

[g(g,m) - ngér]-g(lwc,a)) - 0. .(6)

For a cold plasma in é static magnetic field, ¢ is independent of

k. Théh a simple relation
2 2
) (w,8) = Dy ("-019_) -1 (7)

ekﬁsts between the Darwin énd Méxwell refractive indices n and e

(6 is the angle between k and'gex.) Curves of nMe(w), for 6 = O,

¢ =m/2, and 0 < 6 < /2, may be found, e.g., in Refs. 7 and 8. From-
these diagrams (and from the associated analysis), we see that for
irequencies less than the highest resonant (n2 = @) frequency, !hMQI
is generally large compared to one, i.e., the phase §elocity is much

‘ less than c. The exceptions are thé small frequency intervals near
the cutoffs (n? = 0), where |n2l < 1. We conclude that, except near
the cﬁtoffs, the Darwin model agrees well with the Maxwell results.

For frequencie:s above the highest resonance, nM? < 1 and therefore
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nD2 < 9. The supréluminous vaves of the Maxwell theory, which are
trodblesome_in plasma simulation, ere replaced by evanescent waves in
the Darwin model. In terms of an w vs k diagram, the fast branch

(v » k¢ as k -+ @ ) simply disappears.

For a hot plasma, where £ depends also on k, nc simple relation
like (7) can be found. However, comparison of (6) with (5) again leads
us to conclude that the Darwin model is reliable for slow waves (n2 >> 1)
and unreliable for fast waves (n2 <1).

Finally, for an inhomogeneous plasma, the new modes (drift waves)
have still lower frequencies and phase velocities, and hence the Darwin
model should be valid here as well;

We conclude that, in plasma simulation work, it is not necessary
to choose between a Coulomb model and the fuil Maxwell theory; the
Daryin model presents a third intermediate possibility. It describes
electric and magnetic forces, includes induced fields as well as static
fields, and yet retains much of the simple structure of the Coulomb
model.' Since the electrodynamics of a nonrelativistic plasma usually
deals with slow waves, it is seen that the Darwin model has a wide

\

range:of applicability. o

In this discussion, we have mademho attempt'to deal with the
formulation of differencing schemes, nor to face the difficulties
pointed out by Hasegawa and QOkuda concerning boundary conditions.

We have benefitted greatly from the advice of C. K. Birdsall,

J. Byers, A. Hasegawa, J. Killeen, and A. B. Iangdon.
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